gnxastitle

Teaching activity/Attivita' didattica prof. A. Di Cicco

Lectures for the first degree in Physics/Lezioni per il Corso di Laurea in Fisica (triennale):

  • Physics of fluids+Thermodynamics/Fisica dei Fluidi e Termodinamica (2011-, 5 crediti): program/programma

Lectures for the Master degree in Physics/Lezioni per il Corso di Laurea Magistrale in Fisica (biennale):

Tesi, stages, scambio di studenti (Erasmus programme):

Lectures Academic years (corsi durante precedenti anni accademici) A.A. 2002-2012

Lezioni per i corsi di laurea quadriennali (vecchio ordinamento) A.A. 1995-2001

corso di TERMODINAMICA E FISICA DEI FLUIDI (Laurea triennale in Fisica)

Docente: prof. Di Cicco Andrea

1-Solidi e fluidi
Proprietà meccaniche dei solidi. Definizione di sforzo e deformazione. Modulo di Young. Sforzo di taglio. Compressibilità. Pressione in un fluido in equilibrio. Tensione superficiale. Forze di adesione e di coesione. Capillarità.

2-Moto di fluidi
Moto di un fluido in regime stazionario. Equazione di continuità. Conservazione dell'energia (teorema di Bernoulli). Applicazioni al fluido in quiete, allo scorrimento orizzontale (fenomeno di Venturi), alla portanza in un profilo alare. Corrente fluida viscosa, definizione di viscosità.

3-Termodinamica: concetti generali Concetti di base: sistemi termo dinamici, trasformazioni, parametri di stato. Temperatura. Termometri, termometri a gas. Gas perfetto. Calore. Lavoro. Calore Specifico. Propagazione del calore.

4-Termodinamica: primo principio Primo principio della termodinamica. Sviluppi analitici del primo principio. Calore specifico a pressione costante Cp ed a volume costante Cv. Applicazione del primo principio al caso del gas perfetto: rapporto Cp/Cv, equipartizione dell'energia e calore specifico a volume costante, trasformazioni adiabatiche.

5-Termodinamica: secondo principio Enunciati del secondo principio della termodinamica. Equivalenza tra i due enunciati. Il ciclo di Carnot. Rendimento di una macchina ideale. Teorema di Carnot. Temperatura termodinamica assoluta. Cicli termodinamici reversibili e irreversibili. Integrale di Clausius. Entropia. Sviluppi analitici del secondo principio. Energia interna di un gas perfetto. Entropia di un gas perfetto. Espressione analitica del secondo principio (enunciato di Kelvin). Interpretazione statistica dell'Entropia. Teorema di Nerst (terzo principio). Il calore specifico nei solidi.

6-Transizioni di fase e potenziali termodinamici Eq. di Van Der Waals. Transizioni di fase: calori latenti, diagramma di fase, equazione di Clapeyron. Potenziali termodinamici: Entalpia, Energia Libera di Helmoltz e Gibbs. Proprieta' e relazioni tra le funzioni termodinamiche. Condizioni d'equilibrio (minimo di Energia libera) e applicazione alle transizioni di fase. Regola delle fasi.


Testi consigliati:

Mencuccini, Silvestrini, Fisica I (Liguori, 1987).

[1-3] P . A. Tipler, Fisica 1 (3nd ed.) (Zanichelli , 1995).

per la fisica dei Fluidi vedere anche T. Papa, "Lezioni di Fisica" [15-17] (editore Kappa).

E. Fermi, "Termodinamica" (Boringhieri, 1962)

SOLID STATE PHYSICS (Master degree in Physics)

Docente: prof. Di Cicco Andrea

1) Structure and properties of solids. Crystallization. Materials and methods of solid state physics. Experimental conditions for the study of solid materials. Periodic table and fundamental properties of solids. Potential energy and cohesion in typical classes of solids. Crystal structures. Ideal crystalline lattice. Primitive cell. Basis. Allowed and forbidden symmetries. Classification of Bravais lattices according to symmetry operations. Miller indices. [1]
[1] [Mye] Chapt. 1, 2, see also [Kit] Chapt. 1 or [Ash] Chapt. 4,7.

2) Diffraction of radiation in general. "Scattering" of photons, neutrons and electrons: similarities and differences. Amplitude and intensity of scattered radiation in x-ray diffraction. Atomic form factors. Relationship with the charge density. Diffraction by crystals. Laue equations, equivalence with the Bragg condition. Reciprocal lattice and interplanar distances. Symmetries. Calculation of the scattering amplitude. Structure factor. Laue equations. Examples of the calculation for the structure factor for simple solids. Forbidden reflections. X-ray generators, basic principles. [1,2] Synchrotron radiation. Spectrometers and detectors, sample preparation. [3] Single-crystal and powder diffraction. [1]
[1] [Kit] Chapt. 2.
[2] [War] Chapt. 1-5.
[3] More in: "Practical Surface Analysis", D. Briggs and M. P. Seah, Wiley and sons (1983); Par. 2.4; "X-ray determination of Electron Distributions", R. J. Weiss, North-Holland (1966), Chapt. 3; website of the European Synchrotron Radiation Facility: www.esrf.fr

3) Adiabatic approximation: separation of the ion and electron motions. Conditions for the validity of such approximation in solids. [1] Perfect crystals: consequences for translational invariance (Bloch theorem). Bloch theorem for a generic periodic potential. Periodic boundary conditions, counting of states. Volume of the primitive cell of the reciprocal lattice. [2]
[1] [Bas] Chapt. 3.1,3.3,3.4,3.5. [Mad] Chapt. 1.2
[2] [Ash] Chapt. 8 (p. 132-136)

4) Lattice dynamics. Three-dimensional Bravais lattice with basis: harmonic approximation. Consequences of translational symmetry. Construction of the dynamical matrix. Eigenvalues and eigenvectors. Equations of motion, general characteristics. Acoustic and optical branches. [1,2] Normal modes in one dimension: dispersion relations for monatomic and diatomic chains. Phase and group velocity. Brillouin zones.[2,3]
[1] [Mar] Chapt. II.1, p. 6-10,17-21.
[2] [Ash] Chapt. 22 (422-442).
[3] [Kit] Chapt. 5 (158-170).

5) Quantum theory of the harmonic crystal. Phonons. Internal energy and specific heat (lattice vibrations) classical limit. Quantum and anharmonic corrections. Specific heat at low temperature. Models for intermediate temperatures (Debye, Einstein), definition and meaning of the Debye temperature. Lattice and electronic contributions to the specific heat. Typical Debye temperatures of simple solids. Phonon density of states. Van Howe singularities. Density of states in the Debye and Einstein approximations, comparison with realistic density of states.[1,2]
[1] [Ash] Chapt. 23, App. L.
[2] Reading [Kit] Chapt. 5 (151-158), Chapt. 6 (182-196).

6) Neutron scattering: differential cross-section. Dynamical structure factor S (q,ω). Crystal structures with thermal disorder. Debye-Waller factor and elastic diffusion. One-phonon contribution. Multi-phononic terms. Peak width of single phonon contributions. [1] Inelastic scattering of X-rays [2] Optical measurements of phonon spectra (Brillouin lines). Differences and similarities between scattering of x-rays, neutrons and light. [1]
[1] [Ash] Chapt. 24, App. N.
[2] [Bas] Chapt. 7.5

7) Electronic properties. Drude model for metals. Discussion of the free-electron approximation. Density of electron states and Fermi energy. Typical values for metals. Plasmons. [1,2]
[1] [Mye] Chapt. 6.1, 6.2.
[2] [Ash] Chapt. 1 (p. 2-6), Chapt.2 (p. 30-40)

8) Energy and specific heat of an electron gas. Specific heat of metals at low temperature. [1] Electrical conductivity in metals. [1,2] Hall effect and magnetoresistance. High-frequency conductivity and optical properties of metals. Heat conductivity and thermopower in metals. [3] Compressibility.
[1] [Kit] Chapt. 7 (220-237)
[2] [Mye] Chapt. 6.4.
[3] [Ash] Chapt. 1 (11-25)

9) Limits of the free electron approximation. Periodic potentials. Nearly-free electrons. Bloch states. Fermi surface. Density of electron states. "Weak" potential approximation and perturbative approach. Energy levels close to a Bragg plane. Energy bands and formation of the energy gap in one-dimensional and three-dimensional systems. "Tight-binding" models. LCAO, linear combinations of atomic orbitals. Application to s-like bands. General characteristics of the valence levels. Wannier functions. Methods for the calculation of the band structure in the approximation of independent electrons. Cellular methods. Augmented Plane Wave (APW) method. Orthogonalized plane wave method (OPW). Non-local potentials and pseudopotentials. [1]
[1] [Ash] Chapt. 3, 8 (137-145), 9, 10 , 11.

10) Semiconductors. Valence and conduction bands. Density of holes and electrons, temperature-dependent. Chemical potential. Intrinsic semiconductors. Law of mass action. Doped semiconductors.[1,2]
[1] [Kir] Chapt. 3.
[2] [Ash] App. E, Chapt. 28, Chapt. 29 (reading).

Bibliography:

[Ash] N. Ashcroft, D. Mermin, "Solid state physics", Saunders (1976).
[Bas] F. Bassani e U. M. Grassano, Fisica dello Stato Solido, Boringhieri (2000).
[Cus] N. E. Cusack, "The Physics of Structurally Disordered Matter", Adam Hilger IOP (1987).
[Kir] P. R. Kireev, "Semiconductor Physics", MIR Publ ().
[Kit] C. Kittel, "Introduzione alla fisica dello stato solido", Boringhieri (1982).
[Mad] O. Madelung, "Introduction to Solid-State Theory" Springer-Verlag (1978).
[Mar] A. A. Maradudin, E. W. Montroll, G. H. Weiss, e I. P. Ipatova, "Theory of lattice dynamics in the harmonic approximation", 2nd edition, Academic Press (1971).
[Mye] H. P. Myers, "Introductory Solid State Physics", Taylor and Francis (1990).
[War] B. E. Warren, "X-ray Diffraction", Dover (1990).
[Zim] J. M. Ziman, "Principle of the Theory of Solids", 2nd ed., Cambridge Univ. Press (1972).

Written reports and exam (up to 2017)

Some topics were not deeply discussed during the 2016-2017 lectures, due to the known problems caused by the earthquake series in Camerino. Students are expected to produce a short written report about 3 of the following topics, a few days before the oral examination: 1) The adiabatic approximation. Conditions for the validity of such approximation in solids. 2) Bloch theorem for a generic periodic potential. 3) Hall effect and magnetoresistance. 4) Heat conductivity and thermopower in metals. 5) Compressibility in metals. 6) Semiconductors. Valence and conduction bands. Intrinsic semiconductors. Law of mass action. Doped semiconductors.

  Questions to be answered in written form (2015).

2015/2016. A short written dissertation concerning at least 2 of the 4 questions proposed should be submitted a few days before the oral examination. Discussion of one of the chosen problems, and of two arguments of the program will be part of the oral examination.

2017. A short written dissertation concerning at least 3 of the 6 topics proposed should be submitted a few days before the oral examination. Discussion of one of the chosen problems, and of two arguments of the program will be part of the oral examination.

Written reports (since 2018)

Students can produce short written reports about 3 of the following topics, a few days before the oral examination (not mandatory): 1) The adiabatic approximation. Conditions for the validity of such approximation in solids. 2) Bloch theorem for a generic periodic potential. 3) Hall effect and magnetoresistance. 4) Heat conductivity and thermopower in metals. 5) Compressibility in metals. 6) Semiconductors. Valence and conduction bands. Intrinsic semiconductors. Law of mass action. Doped semiconductors.

Exam (since 2018)

2018/2019. The program does not include part 10 (semiconductors). The exam is oral and usually will be carried out discussing 2 or 3 arguments of the general program. The student can present a short written report (see above) concerning at least 3 of the 6 topics proposed should be submitted a few days before the oral examination. Discussion of one of the chosen problems, and of two arguments of the program will be part of the oral examination.

UP

ADVANCED PHYSICS LABORATORY (Master degree in Physics)

Lectures by A. Di Cicco

Program A.Y. 2012/13

Basic knowledge about theory and methods

X-ray fluorescence (XRF). Experimental set-up: x-ray source, optics, detectors. Theory of photoabsorption. Fluorescence yield. Methods for quantitative x-ray fluorescence analysis. Raman scattering. Experimental set-up: laser source, optics, spectrometer, detectors. Peak-fitting analysis.

Bibliography:
See ``Quantitative X-ray Spectrometry'' by Ron Jenkins, R. W. Gould, and Dale Gedcke (2nd edition, 1995).

Laboratory sessions

Measurements of the XRF spectra of several samples of unkwown chemical composition. The students will acquire the necessary expertise for running the experimental set-up (sample positioning, managing the power-supply, the detector, the multi-channel analyser and related software). The collected XRF data will be subsequently converted in a suitable energy scale (calibration) and the chemical species of the samples identified (qualitative XRF analysis). Full data-analysis, including fitting of the relevant fluorescence peaks over the background signal, will allow the students to measure the relative intensity of the individual components. By application of the theoretical framework concerning the photon-in photon-out process a detailed quantitative analysis will be performed with the aim of determining the concentration of the chemical species inside the given samples. Measurements of Raman scattering spectra of a Sulphur sample using a laser source and an optical spectrometer. The students will acquire the necessary expertise for running the experimental set-up (alignment of the laser beam and calibration, positioning, managing the CCD detector and related software). The collected Raman scattering data (images) will be subsequently converted in a suitable scale (calibration) and the vibrational levels identified. The students will acquire the necessary expertise for XRF and Raman data-analysis including theoretical modeling and evaluation of physical data with their statistical uncertainty.

  • Lecture notes/slides

      Lectures about XRF.

      Lectures about Raman.

    Program A.Y. 2013/14

    Basic knowledge about theory and methods

    X-ray fluorescence (XRF). Experimental set-up: x-ray source, optics, detectors. Theory of photoabsorption. Fluorescence yield. Methods for quantitative x-ray fluorescence analysis. X-ray Diffraction (XRD). Methods and basic theory. Experimental set-up: source, optics, spectrometer, detectors. Peak-fitting analysis.

    Bibliography:
    XRF: See ``Quantitative X-ray Spectrometry'' by Ron Jenkins, R. W. Gould, and Dale Gedcke (2nd edition, 1995). XRD: B. E. Warren, "X-ray Diffraction", Chapt. 1-5, Dover (1990).

    Laboratory sessions

    Measurements of the XRF spectra of several samples of unkwown chemical composition. The students will acquire the necessary expertise for running the experimental set-up (sample positioning, managing the power-supply, the detector, the multi-channel analyser and related software). The collected XRF data will be subsequently converted in a suitable energy scale (calibration) and the chemical species of the samples identified (qualitative XRF analysis). Full data-analysis, including fitting of the relevant fluorescence peaks over the background signal, will allow the students to measure the relative intensity of the individual components. By application of the theoretical framework concerning the photon-in photon-out process a detailed quantitative analysis will be performed with the aim of determining the concentration of the chemical species inside the given samples. Measurements of XRD patterns of capillary samples. Calibration of the angular scale of the detector by identification (indexing) of the Bragg peaks of pure silicon. Identification and evaluation of the lattice spacing of an unknown simple solid sample (Bragg peaks indexing). The students will acquire the necessary expertise for XRF and XRD data-analysis including theoretical modeling and evaluation of physical data with their statistical uncertainty.

  • Lecture notes/slides

      Lectures about XRF.

      Lectures about XRD.

      Tesi Triennale di F. Iesari (XRD) (in Italian).

    Program A.Y. 2014/15

    Basic knowledge about theory and methods

    X-ray fluorescence (XRF). Experimental set-up: x-ray source, optics, detectors. Theory of photoabsorption. Fluorescence yield. Methods for quantitative x-ray fluorescence analysis. X-ray Diffraction (XRD). Methods and basic theory. Experimental set-up: source, optics, spectrometer, detectors. Peak-fitting analysis.

    Bibliography:
    XRF: See ``Quantitative X-ray Spectrometry'' by Ron Jenkins, R. W. Gould, and Dale Gedcke (2nd edition, 1995). XRD: B. E. Warren, "X-ray Diffraction", Chapt. 1-5, Dover (1990).

    Laboratory sessions

    Measurements of the XRF spectra of several samples of unkwown chemical composition. The students will acquire the necessary expertise for running the experimental set-up (sample positioning, managing the power-supply, the detector, the multi-channel analyser and related software). The collected XRF data will be subsequently converted in a suitable energy scale (calibration) and the chemical species of the samples identified (qualitative XRF analysis). Full data-analysis, including fitting of the relevant fluorescence peaks over the background signal, will allow the students to measure the relative intensity of the individual components. By application of the theoretical framework concerning the photon-in photon-out process a detailed quantitative analysis will be performed with the aim of determining the concentration of the chemical species inside the given samples. Measurements of XRD patterns of powder samples. Calibration of the angular scale of the detector by identification (indexing) of the Bragg peaks of pure substances. Identification and evaluation of the change in lattice spacing under high temperature conditions using a special furnace (Bragg peaks indexing and estimate of thermal expansion). The students will acquire the necessary expertise for XRF and XRD data-analysis including theoretical modeling and evaluation of physical data with their statistical uncertainty.

  • Lecture notes/slides

      Lectures about XRF.

      Lectures about XRD.

      Tesi Triennale di F. Iesari (XRD) (in Italian).

    Program A.Y. 2015/16

    Basic knowledge about theory and methods

    X-ray fluorescence (XRF). Experimental set-up: x-ray source, optics, detectors. Theory of photoabsorption. Fluorescence yield. Methods for quantitative x-ray fluorescence analysis. X-ray Diffraction (XRD). Methods and basic theory. Experimental set-up: source, optics, spectrometer, detectors. Introduction to Raman scattering using laser sources. Peak-fitting analysis.

    Bibliography:
    XRF: See ``Quantitative X-ray Spectrometry'' by Ron Jenkins, R. W. Gould, and Dale Gedcke (2nd edition, 1995). XRD: B. E. Warren, "X-ray Diffraction", Chapt. 1-5, Dover (1990).

    Laboratory sessions

    Measurements of the XRF spectra of several samples of unkwown chemical composition. The students will acquire the necessary expertise for running the experimental set-up (sample positioning, managing the power-supply, the detector, the multi-channel analyser and related software). The collected XRF data will be subsequently converted in a suitable energy scale (calibration) and the chemical species of the samples identified (qualitative XRF analysis). Full data-analysis, including fitting of the relevant fluorescence peaks over the background signal, will allow the students to measure the relative intensity of the individual components. By application of the theoretical framework concerning the photon-in photon-out process a detailed quantitative analysis will be performed with the aim of determining the concentration of the chemical species inside the given samples. Measurements of XRD patterns of powder samples. Calibration of the angular scale of the detector by identification (indexing) of the Bragg peaks of pure substances. Identification and evaluation of the change in lattice spacing under high temperature conditions using a special furnace (Bragg peaks indexing and estimate of thermal expansion). Measuring of Raman patterns of crystalline samples. Peak indentification, calibration of the scale, resolution. The students will acquire the necessary expertise for XRF, XRD and Raman data-analysis including theoretical modeling and evaluation of physical data with their statistical uncertainty.

  • Lecture notes/slides

      Lectures about XRF.

      Lectures about XRD.

      Lectures about Raman.

      Tesi Triennale di F. Iesari (XRD) (in Italian).

  • Reports presented by students

      Report of group 1.

      Report of group 2.

      Report of group 3.

    Program A.Y. 2016/17-2017/18-2018/19

    Basic knowledge about theory and methods

    Thin film production techniques. Evaporation methods. Experimental set-up for thin film evaporation and thickness control. Optical and electron microscopy. Resolution and limits of both techniques. Imaging with secondary and backscattered electrons. X-ray fluorescence (XRF), elemental and micro-analysis. Fluorescence yield. Experimental set-up for optical and electron microscopy. Introduction to Raman scattering using laser sources. Raman scattering experiments. Peak-fitting analysis.

    Laboratory sessions

    Thin film production by evaporation methods. Experimental set-up for thin film evaporation and thickness control. Optical microscopy for morphology check. High-resolution SEM for detailed imaging and chemical characterization. Measurements of the XRF spectra of several films of unkwown chemical composition. The students will acquire the necessary expertise for running the experimental set-up (sample positioning, managing the power-supply, the detector, the multi-channel analyser and related software). The collected XRF data will be subsequently converted in a suitable energy scale (calibration) and the chemical species of the samples identified (qualitative XRF analysis). Full data-analysis, including fitting of the relevant fluorescence peaks over the background signal, will allow the students to measure the relative intensity of the individual components. SEM imaging sessions with micro-analysis. Quantitative analysis will be performed with the aim of determining the concentration of the chemical species inside the given samples. Measuring of Raman patterns of films and crystalline samples. Peak identification, calibration of the scale, resolution. The students will acquire the necessary expertise for XRF, SEM and Raman data-analysis including theoretical modeling and evaluation of physical data with their statistical uncertainty.

  • Lecture notes/slides

      Lectures about thin film depositions.

      Lectures about optical and scanning electron microscopy.

      Lectures about XRF.

      Lectures about Raman.

    Exam

    The exam will develop presenting a concise report of about 4 pages including figures and tables by the students' groups. The report has to be presented typically at the end of the practical sessions with a limit deadline (15 June). Each student will be examined individually and the evaluation is 50% student report and 50% individual exam.

    UP

    Tesi di Laurea e di Dottorato svolte nel laboratorio

    Tesi di Laurea (corso di Fisica quadriennale)

    • F. Sperandini: "Indagine sulle proprietà strutturali locali di superconduttori ad alta TC tramite spettroscopia EXAFS". Università di Camerino, luglio 1995, voti 110/110.
    • M. Minicucci: "Analisi della struttura locale del CuBr liquido e solido tramite spettroscopia EXAFS". Università di Camerino, febbraio 1996, voti 110/110.
    • G. Aquilanti: "Studio delle proprietà strutturali del rodio solido e liquido ad alta temperatura". Università di Camerino, aprile 1998, voti 110/110 e lode.
    • M. Taglienti: "Determinazione della struttura a corto raggio in AgBr solido e liquido tramite spettroscopia EXAFS". Università di Camerino, dicembre 1999, voti 101/110.
    • M. Cesaroni: "Studio della struttura dello zinco ad alta pressione e alta temperatura mediante diffrazione di raggi x". Università di Camerino, aprile 2000, voti 101/110.
    • E. Principi: "Studio del disordine strutturale nella lega ternaria RbBr(1-x)I(x) in fase solida e liquida". Università di Camerino, aprile 2000, voti 106/110.
    • A. Trapananti: "Studio della Struttura e delle transizioni di fase nel CuI tramite assorbimento e diffrazione di raggi X". Università di Camerino, febbraio 2001, voti 110/110 e lode.
    • E. Fabiani: "Studio della Struttura e delle transizioni di fase nel InAs soggetto ad alte pressioni tramite assorbimento e diffrazione di raggi X". Università di Camerino, luglio 2001, voti 104/110.
    • S. Faggioni: "Struttura locale del rame ad alte temperature in fase solida e liquida". Università di Camerino, aprile 2002, voti 110/110 e lode.
    • A. C. Frasini: "Studio delle transizioni di fase del germanio solido in condizioni estreme di pressione e temperatura mediante diffrazione di raggi x". Università di Camerino, luglio 2002, voti 110/110.
    • F. Scoccia: "Studio della struttura locale nell'intorno del sito attivo di un sistema metallo-proteico tramite spettroscopia di assorbimento di raggi X". . Università di Camerino, ottobre 2002, voti 108/110.
    • B. Giovenali: "Studio della fusione di superficie del Ge(111) mediante spettroscopie elettroniche". Università di Camerino, aprile 2003, voti 110/110 e lode.
    • R. Poloni: "Studio della struttura locale nel Ga liquido ad alta pressione ed alta temperatura tramite spettroscopia di assorbimento di raggi X", Università di Camerino, aprile 2004, voti 110/110 e lode.
    • P. Rocci: "Studio della struttura del Cadmio ad alta pressione", Università di Camerino, luglio 2004, voti 105/110.
    Tesi di Laurea Triennale e Magistrale (Italiano)

    • F. Coppari: "Struttura e sottorareddamento del rame liquido ad alta pressione", (laurea Magistrale) Università di Camerino, aprile 2006, voti 110/110 e lode.
    • A. Giusto: "La scienza e la tecnologia al serivizio dei beni culturali: il ruolo della Fisica", (laurea triennale) Università di Camerino, settembre 2007, voti xxx/110. (co-relatore: M. Minicucci)
    • E. Giangrisostomi: "Transizioni di fase in sistemi disordinati densi", (laurea triennale) Università di Camerino, settembre 2008, voti 110/110 e lode.
    • L. Savino: "La diffrazione a dispersione di energia (EDXD) come strumento di indagine in condizioni estreme di alta pressione e temperatura", (laurea triennale) Università di Camerino, luglio 2009, voti xxx/110. (co-relatore: M. Minicucci)
    • G. Canullo, "Pirometria nell'infrarosso per applicazioni nel campo della Fisica della Materia" , Università di Camerino, luglio 2010, voti xxx/110. (co-relatore: E. Principi)
    • F. Iesari: "Diffrazione dei raggi X su materiali nanocristallini: studio del Bismuto", (laurea triennale) Università di Camerino, febbraio 2011, voti 110/110 e lode.
    • M. Ciambezi: "Diffrazione di raggi X da polveri in diverse condizioni di pressione e temperatura", (laurea triennale) Università di Camerino, luglio 2011, voti xxx/110. (co-relatore: M. Minicucci)
    • F. Minnozzi: "Diffrazione a dispersione d'angolo (ADXD) in condizioni di alta pressione",(laurea triennale) Università di Camerino, luglio 2014, voti xxx/110. (co-relatore: M. Minicucci)
    • V. Faccenda: "Disordine strutturale nei liquidi: il fattore di struttura",(laurea triennale) Università di Camerino, luglio 2014, voti 110/110 e lode. (co-relatore: F. Iesari)
    • D. Piciotti: "Esperimenti di spettroscopia micro-Raman: il caso dell'acqua",(laurea triennale) Università di Camerino, luglio 2017, voti xxx/110.
    Master thesis (English)

    • E. Giangrisostomi: "X-ray absorption spectroscopy and Raman scattering study of GeO2-SiO2 glasses under high pressure", (laurea Magistrale) Università di Camerino, settembre 2010, voti 110/110 e lode.
    • L. Properzi: "Phase transitions in Se under pressure probed by a combination of Raman scattering and XAS", (laurea Magistrale) Università di Camerino, luglio 2012, voti 110/110 e lode. (co-relatori: A. Polian, M. Minicucci, P. Munsch).
    • F. Iesari: "Study of local ordering in liquid and undercooled Nickel by X-ray Absorption Spectroscopy", (laurea Magistrale) Università di Camerino, luglio 2013, voti 110/110 e lode.
    • M. Ciambezi: "Probing the evolution of SEI in Li-ion cells by As K-edge XAS", (laurea magistrale) Università di Camerino, settembre 2015, voti xxx/110.
    • C. Mannocchi: "Structural study of disordered systems by X-ray Absorption Spectroscopy and Reverse Monte Carlo modelling: the case of glassy GeSe2", (laurea magistrale) Università di Camerino, febbraio 2019, voti xxx/110. (co-relatori: A. Trapananti, A. Di Cicco).
    Doctoral Thesis (PhD)/Tesi di Dottorato

    • L. Comez: "Studio di metalli in condizioni estreme di pressione e temperatura mediante spettroscopia di assorbimento di raggi x". Università di Camerino, XIII ciclo, gennaio 2001.
    • E. Principi: "Transizioni di fase nel germanio in condizioni estreme", Università di Camerino, XVI ciclo, aprile 2004.
    • A. Trapananti: "Local ordering in liquid metals under high-pressure and high-temperature conditions: an x-ray absorption study", Università di Camerino, XVII ciclo, aprile 2005.
    • F. Coppari: "Transitions de Phase induites par la pression dans les materiaux amorphes: Ge et alliages Si-Ge", Universitè Pierre et Marie Curie (UPMC, Paris), Octobre 2010. (co-advisor: A. Polian).
    • G. Greco: "Study of the atomic structure and morphology of the Pt3Co nanocatalyst for application in proton exchange membrane fuel cells (PEMFC)." , Università di Camerino, XXII ciclo, luglio 2010. (co-advisor: A. Witkowska).
    • L. Tabassam: "Structural Refinement of Ni-doped LiFePO4 materials used in Energy Storage Devices", Università di Camerino, XXIV ciclo, luglio 2012.
    • L. Properzi: "Short-range structue of compressed archetypal chalcogenide glasses", Università di Camerino, XXVIII ciclo, febbraio 2016. Thesis shared between Unicam and the SOLEIL synchrotron radiation facility (co-supervisor: F. Baudelet).
    • K. Hatada: , Università di Camerino, XXVIII ciclo, Thesis partially funded by TIMEX project for the Italian FEL facility in Trieste. Thesis not discussed, K. Hatada took a position of associate professor in Japan in 2018.
    • F. Iesari: "Geometrical structures in disordered multi-atomic systems probed by XAS Reverse Monte Carlo refinement", Università di Camerino, XXIX ciclo, ottobre 2017. Thesis co-funded by CNR within a project for the exploitation of the FEL facility in Trieste.
    • M. Ciambezi: "", Università di Camerino, XXXI ciclo. Thesis partially funded by SIRBATT project.
    • Y. Mijiti: "" Università di Camerino, XXXII ciclo. Thesis partially funded by the SOLEIL synchrotron radiation facility (co-supervisor: F. Baudelet).

    UP

    TESI (dottorato di ricerca, laurea magistrale) SPERIMENTALI IN FISICA

    Doctoral Thesis (PhD) in Physics (3 years)

    The International School of Advanced Studies of the University of Camerino aims to increase the participation of foreign candidates in our PhD programs. Foreign candidates will receive preferential treatment in the awarding of PhD fellowships within the international School of Advanced Studies. The PhD courses involve 3 years of study and research, with a final thesis written in English. Teaching activities mainly involve seminars and topical Short Courses; research experience in foreign laboratories (mandatory for about 6 months, in 3 years of PhD) is actively encouraged. Please see the relevant links for the PhD program at Camerino University. The active research lines of the XAS group at the University of Camerino can be summarised as follows:

    1) Study and characterization of disordered and ill-ordered materials under extreme conditions using synchrotron radiation and laboratory techniques.

    2) Development of ultrafast measurements of phase transitions in matter under extreme and/or non-equilibrium conditions using 4th generation radiation sources (free-electron laser).

    3) Study and characterization of innovative nanomaterials with advanced x-ray and electron microscopy techniques for Li ion batteries, fuel cell and energy storage applications.

    Corso di laurea triennale/magistrale, Master degree in Physics

    Sono disponibili alcuni titoli di tesi sperimentali di struttura della materia basati sull'utilizzo delle tecniche di assorbimento e diffrazione di raggi X, e di tecniche avanzate per lo studio delle proprietà elettroniche, strutturali e vibrazionali della materia (microscopia elettronica, diffusione Raman, tecniche ottiche ultraveloci). Il lavoro di tesi consiste nell'acquisizione delle nozioni di base di una o entrambe le tecniche sperimentali, nell'applicazione di queste ad un materiale d'interesse fondamentale o tecnologico e nella successiva analisi dei dati. Tematiche attuali di particolare interesse sono le misure di sistemi disordinati in condizioni estreme (alte pressioni, temperature), lo studio di (nano) materiali funzionali innovativi, e lo sviluppo di metodi avanzati di analisi dei dati con tecniche di Monte Carlo e scattering multiplo. Nel corso della tesi si prevede lo sviluppo di tecniche sperimentali, teorico-metodologiche o numeriche originali. Il lavoro verra' svolto in sede per quanto riguarda la preparazione degli esperimenti e l'analisi dei dati. L'esecuzione delle misure e la caratterizzazione dei campioni verranno eseguite presso i laboratori XAS di Unicam con la strumentazione disponibile e presso le linee di radiazione di sincrotrone disponibili in installazioni europee (Elettra, Trieste; Soleil, Paris; ESRF, Grenoble). La durata prevista della tesi di laurea magistrale è di 10-12 mesi. Sono richiesti spirito d'iniziativa e una buona preparazione di base. Per la preparazione della laurea triennale (2-3 mesi) viene richiesto di comprendere ed approfondire un'argomento o un esperimento di cui siano disponibili pubblicazioni scientifiche. Il relatore e' a disposizione per qualsiasi chiarimento.

    Master thesis in experimental condensed matter physics are available. They mainly concern the application of x-ray absorption, x-ray diffraction and related material-science techniques (Electron Microscopy, Raman scattering, optical ultrafast spectroscopy). The thesis work consists in acquiring the necessary knowledge of one or more experimental techniques, applying these techniques to a material of interest and in the subsequent data analysis. Current topics of particular interest are experiments on disordered systems under extreme conditions (high pressures, temperatures), study of innovative functional nano-materials, and developments of advanced data-analysis methods based on Monte Carlo and multiple-scattering calculations. Development of experimental techniques, theoretical or methodological techniques will be carried out within the thesis work. Preparation and data-analysis of the experiments will be mainly carried out in our home laboratory, while some experiments could be carried out at international large-scale facilities (Synchrotrons like Elettra, Trieste; Soleil, Paris; ESRF, Grenoble). The expected duration of the master's degree thesis is 10-12 months. Personal initiative and a good preparation on physics fundamentals are required. Further clarifications may be asked to the scientific responsible.

    UP

    "Stages" presso il laboratorio XAS e laboratori collegati

    Fin dal 2002 e' possibile frequentare il laboratorio XAS per effettuare degli "stages" utilizzabili per il conseguimento di lauree triennali e magistrali. Gli argomenti possono spaziare dal trattamento di dati e immagini all'interfacciamento tra calcolatori e strumentazione, includendo la preparazione e l'esecuzione di esperimenti collegati all'attivita' del laboratorio (diffrazione di raggi X, assorbimento e fluorescenza X, alte pressioni/temperature). Per la disponibilita' di titoli particolari e ogni ulteriore informazione contattare il responsabile.

    UP

    Studenti/visitatori presso i laboratori (progetti ERASMUS, ERASMUS+ e successivi)

    Corsi e attivita' di laboratorio relativi al gruppo XAS sono frequentabili da studenti di altre Universita'/istituzioni nell'ambito di accordi internzazionali. Nell'ambito del progetto ERASMUS hanno frequentato e superato gli esami di profitto il corso di "Laboratorio di Fisica della Materia" gli studenti G. Bergmanski, R. Leszek e Michal Bialoskorski, provenienti dal Politecnico di Gdansk (1999). La Dr. A. Witkowska ha effettuato numerosi "stages" presso il nostro laboratorio per impadronirsi delle tecniche di assorbimento di raggi X nell'ambito della compilazione della tesi di dottorato (1999-2001). Il Dr. J. Bosko ha effettuato uno "stage" di qualche mese presso il nostro laboratorio per effettuare simulazioni di dinamica molecolare ed apprendere le tecniche di misura con spettroscopia X (2001). Dal 2001 in poi numerosi studenti provenienti prevalentemente dall'Italia, Francia, Polonia e Giappone hanno frequentato i laboratori. Nel corso del 2002 hanno frequentato i laboratori 3 studenti provenienti dal politecnico di Gdansk e una studentessa di dottorato (Clara Fillaux) proveniente dall'Universita' di Paris VI. Dal 2003 in poi diversi studenti e ricercatori hanno frequentato il nostro laboratorio per stages di istruzione, proveniente maggiormente dal Politecnico di Gdansk e dall'Universita' UPMC di Parigi (Pierre et Marie Curie). Un ricercatore del CNRS (Yvonne Soldo) di Grenoble ha avuto il comando per un anno (2009) nel nostro laboratorio per approfondire le conoscenze nel campo dell'assorbimento di raggi X.


    Local date/time: 21 August 2019 - 3:16


  • COPYRIGHT 1996-today XAS group University of Camerino - Responsible: A. Di Cicco
    URL: http://gnxas.unicam.it

    Blog counter